Tamil Nadu Precision Farming Project 2004-05 to 2006-07
 (A turn key project by Tamil Nadu Agricultural University)

1. Project Profile and products: Part I

> Dr. E.Vadivel PhD.,
> Former Dean (H) \& Director Extension Education) Former Project Officer (Precision Farming and e extension) Tamilnadu Agricultural University, Coimbatore ,641003
http://www2.lse.ac.uk/newsAndMedia/videoAndAudio/research/theSecondIndianGreenRevolution.aspx.

Home	Study	Life at LSE	Alumni	Research and expertise	Business and consultancy	News and media	Public events	Supporting LSE	About LSE

Homu Video and audio	
News and media	$\stackrel{\rightharpoonup}{ }$
Video and audio	-
Research	∇
A New Approach To Child Protection	
Bioweapons: risk and response	
Choice and the Future of Healthcare	
Colonising Knowledge in the Kingdom of Kandy	

Dysfunctional markets

Living in the Second Nuclear Age
Measuring the economic impact of a natural disaster

On the evolution of morality
The politics of personal identity

The Second Indian Green Revolution

Five challenges for saving the planet
Panic on the streets of London

The Second Indian Green Revolution

Public lectures and events

Independent of British rule, the Indian economy expanded rapidly - but as the population also expanded, fears grew that the land would not be able to feed the rising numbers. The government took action and, during the $1960 \mathrm{~s}, 70 \mathrm{~s}$, and into the 80 s , impending famine was successfully averted through a series of agricultural policies designed to increase crop yields. This became known as the "Green Revolution."

As part of a major project investigating how well facts travel, LSE economic historians Peter Howlett and Aashish Velkar travelled to southern India in search of a case study to see what had made those policies so successful. But when they arrived, they found a second green revolution was underway - presenting them with a unique research opportunity.

Following a team from Tamil Nadu Agricultural University, Dr Howlett and Dr Velkar were able to study firsthand how knowledge was transmitted between policy makers, scientists, and farmers, and how a very different model was emerging - one which emphasised a two-way flow of information and which has so far produced startling results.

Their findings are in a new book collected on the "How Well Do 'Facts' Travel?" project, due out mid 2010.

Plan of Work:

- 400 ha @ one ha / farmer in Dharmapuri /Krishnagiri Districts

1 st crop was raised by Scientist of TNAU
Offered technical support for $2^{\text {nd }}$ to $-5^{\text {th }}$ crop raised by by the farmer
Scale up:

Year Dept Hortic	Comm. Agric	TNAU	Total (ha)	
2004-06:	-	-	400 ha	400
2005-06:	735 ha	-	-	735
2006-07:	-	-	560 ha	560
2007-08	6100 ha	6100 ha	600 ha	12800
2008-09:	4480 ha	4280 ha	640 ha	9400
2009-10 :	6940 ha	4000 ha	-	10,940
2010-11	4000 ha	8500 ha	-	12,500
Kavunji	1000 ha	-	-	1000
IAMWARM-	-	-	6000	
G. Total 23255 ha	$22,800 \mathrm{ha}$	2200 ha	53,255	

Measurable out puts:

1. Enhanced the productivity of crops by $60-80 \%$
2. 95 percent marketable produce with less unmarketable produces
3. High end quality parameters and 30% premium price in the market
4. Water economy 30 to 40%
5. Electricity economy 50 \%
6. Extended period of harvest to match lean season in the market
7. Less labor dependence
8. Extended shelf life
9. 25% more weight per unit volume for the produce
10.Empowerment of farmers
(Technical, Economical and social empowerment)

Transform Agriculture?

From Productive to Profitable agriculture?
From Sustainable to Competitive agriculture?
From Production driven to Market driven?
From Localised to Globalised Agriculture

Yes, Here is the Precise Model..

What cripples agriculture?

- Labour shortage (Newer avenues for rural workforce and unwillingness of next generation to opt for agriculture)
- Dictated contract system which doubles the cost of production (Individual operation contract demanded by the local labour)
- Polluted and in adequate irrigation water (Borewell supported irrigation is on the lead)
- Resource poorness of the farm family

Input Cost escalation rate Vs Produce cost (Total mismatch of Cost hike for inputs vs Cost hike for the produces)

- Incapability to handle advanced technologies (Advanced technologies require hands on training and no other TOT)

The way out is the Precision model...

Dimension of Precision

Temperate Countries
-GIS and Sub cubic cm soil grid level
-Uniform Nature of Soil (Sensor based)

- Single Crop Cycle system (excluding winter and autumn)
-Highly mechanized Farming system

Tropical Countries

-Prohibitive GIS Cost
-Diverse and heterogenous nature of Soil

- Multi cropping system
- Manual Farming system

Precision elements in tropical farming system

1. Soil Preparation
2. Nursery
3. Crop geometry
4. Fertigation
5. Growth management: Regulation of flowering, training the canopy,
6. Plant protection : Monitoring System, IPM and IDM
7. Field Level PHM : Harvest Index, handling, sorting and grading and labeling crates
8. Cluster Approach : Operation thru Registered Precision Farmers Associations at Cluster level
9. Market linkage : Buyer seller Meet and Supply Chain workshops for marketing
10. Producer Companies: Precision Farmers Producers Company Ltd.,

Cultivated Crops

Agriculture: Sugarcane, Cotton, Maize, Sunflower, Ground nut, Sesame, Finger millets, Sorghum, Pearl Millet

Horticulture: Tapioca, Banana, Tomato, Brinjal, Chilli, Curry leaf Watermelon, Papaya, Bitter gourd, Bottle Gourd, Snake gourd, Lab lab, Turmeric, Yam, Onion ,Musk melon Potato, Carrot, Cabbage, Radish, Beet, Cucumber Cauliflower, Coriander, Chow chow, Beans, Paprika, Ash gourd, Rose, Chrysanthimum, Limoniums Marigold, Aester,

Main Field $60^{\text {th }}$ day

Mr.N.Chinnasamy of Chinnamittahalli, was able to cultivate Hardly one acre this far, but now cultivates one ha twice with the same water available in the well

90\% plus first grade on sorting

35 tonnes against 22 tonnes/ha (60% increase)

Hybrid Tomato : Staking in Progress

Tomato at Somanahalli: Examination for pest and diseases

Tomato Hydrid ... Finse grade fruits

Margold in Tomato to Hap Nematodes

SFarm Women addquality always.r. by sorting, grading and labeling

Weight for unit volume is 25% higher than conventional produce

1.15 acre , recorded 170 MT (against 60 MT) Bought one Green Scorpio;

$$
19
$$

Coriander 35 days neatly Rs 1.35 lakhs....in store?

0
4
$34+5+4 x^{2}$

Paprika made the farmer crazs neve endint haryest...for months

Cabbage from 350 bags / acre to......

650 bags.....

The scientists, Vice Chancellor, farmer and the happy crop

Agricultural Production Commissioner and the turmeric crop......

（

Abundant production．．．． MT／ha

N
（
（
（
（

號
$+\infty$
$+\infty$
$+\infty$
$+\infty$
$+\infty$
$+\infty$
$+\infty$

